Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 661
Filtrar
1.
Dokl Biochem Biophys ; 506(1): 191-194, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36303050

RESUMO

The effect of silicon nanoparticles (1 µg/mL) on the activity of lipid peroxidation, peroxidase, superoxide dismutase, and catalase in tomato roots invaded by root-knot nematode Meloidogyne incognita was studied. It was shown that, at the early stages of parasitization in the plants treated with Si-NPs, a low activity of PO and SOD, as well as an increased level of lipid peroxidation, are observed, which indicates the formation of free radicals (reactive oxygen species, ROS) that can inhibit nematodes and limit the formation of giant cells. During the sedentary stage, at the stages of nutrition, development, and egg production, the roots of the treated plants showed an increased activity of PO, CAT, and SOD, as well as a low activity of LPO as compared to the infested untreated plants. This makes it possible to maintain a balance between the formation and neutralization of ROS and is important not only in the protection of plant tissues from oxidative processes but also in the preservation of giant cells that feed the parasite. The presented data for the first time show the mechanism of action of Si-NPs in the development of resistance and adaptation of plants to biogenic stress, associated with the effect on various components of the antioxidant system and their functional interaction.


Assuntos
Antioxidantes , Nanopartículas , Raízes de Plantas , Silício , Solanum lycopersicum , Tylenchoidea , Animais , Antioxidantes/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/parasitologia , Raízes de Plantas/enzimologia , Raízes de Plantas/parasitologia , Espécies Reativas de Oxigênio , Silício/farmacologia , Superóxido Dismutase
2.
Plant Sci ; 312: 111033, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620437

RESUMO

The glutamine amidotransferase gene GAT1_2.1 is a marker of N status in Arabidopsis root, linked to a shoot branching phenotype. The protein has an N-terminal glutamine amidotransferase domain and a C-terminal extension with no recognizable protein domain. A purified, recombinant version of the glutamine amidotransferase domain was catalytically active as a glutaminase, with apparent Km value of 0.66 mM and Vmax value of 2.6 µkatal per mg. This form complemented an E. coli glutaminase mutant, ΔYneH. Spiking of root metabolite extracts with either the N-terminal or full length form purified from transformed tobacco leaves led to reciprocal changes in glutamine and ammonia concentration. No product derived from amido-15N-labeled glutamine was identified. Visualization of GAT1_2.1-YPF transiently expressed in tobacco leaves confirmed its mitochondrial localization. gat1_2.1 exhibited reduced growth as compared with wild-type seedlings on media with glutamine as sole nitrogen source. Results of targeted metabolite profiling pointed to a possible activation of the GABA shunt in the mutant following glutamine treatments, with reduced levels of glutamic acid, 2-oxoglutarate and γ-aminobutyric acid and increased levels of succinic acid. GAT1_2.1 may act as a glutaminase, in concert with Glutamate Dehydrogenase 2, to hydrolyze glutamine and channel 2-oxoglutarate to the TCA cycle under high nitrogen conditions.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Glutaminase/genética , Glutaminase/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/enzimologia , Transaminases/genética , Transaminases/metabolismo , Variação Genética , Genótipo , Raízes de Plantas/genética
3.
Nature ; 599(7884): 273-277, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707283

RESUMO

Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Prótons , Transdução de Sinais , Álcalis , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Ativação Enzimática , Proteínas F-Box/metabolismo , Concentração de Íons de Hidrogênio , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo
4.
PLoS One ; 16(9): e0257172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492083

RESUMO

As an essential element, zinc (Zn) can improve or inhibit the growth of plants depending on its concentrations. In this study, the effects of 24-Epibrassinolide (EBR), one well-known steroid phytohormone regulating plant growth and alleviating abiotic stress damage, on morphological parameters and antioxidant capacities of Sedum lineare were investigated under different Zn doses. Compared to plants only exposed to Zn, simultaneously foliar application of 0.75 µM EBR significantly improved multiple morphological characteristics and such growth-improving effects were more significant at high Zn concentrations. At a detrimental 800 µM Zn, EBR benefitted plant growth most prominently, as shown by that the stem length, fresh weight and internode length were increased by 111%, 85% and 157%, respectively; than Zn solely treated plants. EBR spray also enhanced both the activities of antioxidant enzymes such as peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and the contents of antioxidative agents including ascorbic acid (AsA) and glutathione (GSH), which in turn decreased the accumulation of reactive oxygen species (ROS) and alleviated the lipid peroxidation in plants. Thus, by demonstrating that EBR could help S. lineare resist high-zinc stress through strengthening the antioxidant system, this work provided a new idea for expanding the planting range of Crassulaceae plants in heavy metal contaminated soil for phytoremediation purpose in the future.


Assuntos
Antioxidantes/farmacologia , Brassinosteroides/farmacologia , Sedum/crescimento & desenvolvimento , Esteroides Heterocíclicos/farmacologia , Estresse Fisiológico , Zinco/toxicidade , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Sedum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Superóxidos/metabolismo
5.
Mol Biol Rep ; 48(9): 6277-6290, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34389920

RESUMO

BACKGROUND: Assimilation of sulfur to cysteine (Cys) occurs in presence of serine acetyltransferase (SAT). Drought and salt stresses are known to be regulated by abscisic acid, whose biosynthesis is limited by Cys. Cys is formed by cysteine synthase complex depending on SAT and OASTL enzymes. Functions of some SAT genes were identified in Arabidopsis; however, it is not known how SAT genes are regulated in rice (Oryza sativa) under salt stress. METHODS AND RESULTS: Sequence, protein domain, gene structure, nucleotide, phylogenetic, selection, gene duplication, motif, synteny, digital expression and co-expression, secondary and tertiary protein structures, and binding site analyses were conducted. The wet-lab expressions of OsSAT genes were also tested under salt stress. OsSATs have underwent purifying selection. Segmental and tandem duplications may be driving force of structural and functional divergences of OsSATs. The digital expression analyses of OsSATs showed that jasmonic acid (JA) was the only hormone inducing the expressions of OsSAT1;1, OsSAT2;1, and OsSAT2;2 whereas auxin and ABA only triggered OsSAT1;1 expression. Leaf blade is the only plant organ where all OsSATs but OsSAT1;1 were expressed. Wet-lab expressions of OsSATs indicated that OsSAT1;1, OsSAT1;2 and OsSAT1;3 genes were upregulated at different exposure times of salt stress. CONCLUSIONS: OsSAT1;1, expressed highly in rice roots, may be a hub gene regulated by cross-talk of JA, ABA and auxin hormones. The cross-talk of the mentioned hormones and the structural variations of OsSAT proteins may also explain the different responses of OsSATs to salt stress.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , Estresse Salino/genética , Serina O-Acetiltransferase/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Sítios de Ligação , Ciclopentanos/farmacologia , Cisteína/metabolismo , Duplicação Gênica , Oxilipinas/farmacologia , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Domínios Proteicos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Serina O-Acetiltransferase/química , Serina O-Acetiltransferase/metabolismo , Sintenia
6.
Plant J ; 106(5): 1468-1483, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768632

RESUMO

Suberin is a complex hydrophobic polymer of aliphatic and phenolic compounds which controls the movement of gases, water, and solutes and protects plants from environmental stresses and pathogenic infection. The synthesis and regulatory pathways of suberin remain unknown in Brachypodium distachyon. Here we describe the identification of a B. distachyon gene, BdFAR4, encoding a fatty acyl-coenzyme A reductase (FAR) by a reverse genetic approach, and investigate the molecular relevance of BdFAR4 in the root suberin synthesis of B. distachyon. BdFAR4 is specifically expressed throughout root development. Heterologous expression of BdFAR4 in yeast (Saccharomyces cerevisiae) afforded the production of C20:0 and C22:0 fatty alcohols. The loss-of-function knockout of BdFAR4 by CRISPR/Cas9-mediated gene editing significantly reduced the content of C20:0 and C22:0 fatty alcohols associated with root suberin. In contrast, overexpression of BdFAR4 in B. distachyon and tomato (Solanum lycopersicum) resulted in the accumulation of root suberin-associated C20:0 and C22:0 fatty alcohols, suggesting that BdFAR4 preferentially accepts C20:0 and C22:0 fatty acyl-CoAs as substrates. The BdFAR4 protein was localized to the endoplasmic reticulum in Arabidopsis thaliana protoplasts and Nicotiana benthamiana leaf epidermal cells. BdFAR4 transcript levels can be increased by abiotic stresses and abscisic acid treatment. Furthermore, yeast one-hybrid, dual-luciferase activity, and electrophoretic mobility shift assays indicated that the R2R3-MYB transcription factor BdMYB41 directly binds to the promoter of BdFAR4. Taken together, these results imply that BdFAR4 is essential for the production of root suberin-associated fatty alcohols, especially under stress conditions, and that its activity is transcriptionally regulated by the BdMYB41 transcription factor.


Assuntos
Aldeído Oxirredutases/metabolismo , Brachypodium/genética , Álcoois Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/biossíntese , Aldeído Oxirredutases/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Brachypodium/enzimologia , Brachypodium/fisiologia , Edição de Genes , Técnicas de Inativação de Genes , Mutação com Perda de Função , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Poliésteres/metabolismo , Estresse Fisiológico , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/fisiologia
7.
Microbiol Res ; 246: 126721, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33581445

RESUMO

Microbial volatile organic compounds (mVOCs) have great potential in plant ecophysiology, yet the role of belowground VOCs in plant stress management remains largely obscure. Analysis of biocontrol producing VOCs into the soil allow detailed insight into their interaction with soil borne pathogens for plant disease management. A root interaction trial was set up to evaluate the effects of VOCs released from Trichoderma viride BHU-V2 on soil-inhabiting fungal pathogen and okra plant growth. VOCs released into soil by T. viride BHU-V2 inhibited the growth of collar rot pathogen, Sclerotium rolfsii. Okra plants responded to VOCs by increasing the root growth (lateral roots) and total biomass content. VOCs exposure increased defense mechanism in okra plants by inducing different enzyme activities i.e. chitinase (0.89 fold), ß-1,3-glucanase (0.42 fold), peroxidase (0.29 fold), polyphenol oxidase (0.33 fold) and phenylalanine lyase (0.7 fold) when inoculated with S. rolfsii. In addition, T. viride BHU-V2 secreted VOCs reduced lipid peroxidation and cell death in okra plants under pathogen inoculated condition. GC/MS analysis of VOCs blend revealed that T. viride BHU-V2 produced more number of antifungal compounds in soil medium as compared to standard medium. Based on the above observations it is concluded that okra plant roots perceive VOCs secreted by T. viride BHU-V2 into soil that involved in induction of plant defense system against S. rolfsii. In an ecological context, the findings reveal that belowground microbial VOCs may play an important role in stress signaling mechanism to interact with plants.


Assuntos
Abelmoschus/efeitos dos fármacos , Abelmoschus/crescimento & desenvolvimento , Basidiomycota/efeitos dos fármacos , Hypocreales/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , Abelmoschus/enzimologia , Agentes de Controle Biológico/farmacologia , Morte Celular/efeitos dos fármacos , Hypocreales/isolamento & purificação , Peroxidação de Lipídeos/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Estresse Fisiológico/efeitos dos fármacos
8.
Nat Commun ; 12(1): 735, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531490

RESUMO

Nitrogen (N) and carbon (C) are essential elements for plant growth and crop yield. Thus, improved N and C utilisation contributes to agricultural productivity and reduces the need for fertilisation. In the present study, we find that overexpression of a single rice gene, Oryza sativa plasma membrane (PM) H+-ATPase 1 (OSA1), facilitates ammonium absorption and assimilation in roots and enhanced light-induced stomatal opening with higher photosynthesis rate in leaves. As a result, OSA1 overexpression in rice plants causes a 33% increase in grain yield and a 46% increase in N use efficiency overall. As PM H+-ATPase is highly conserved in plants, these findings indicate that the manipulation of PM H+-ATPase could cooperatively improve N and C utilisation, potentially providing a vital tool for food security and sustainable agriculture.


Assuntos
Membrana Celular/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Compostos de Amônio/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia
9.
Plant J ; 106(3): 706-719, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33570751

RESUMO

Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.


Assuntos
Homeostase , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Citoplasma/enzimologia , Citoplasma/metabolismo , Oryza/enzimologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Brotos de Planta/enzimologia , Brotos de Planta/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia
10.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445552

RESUMO

Production of a volatile phenylpropene; eugenol in sweet basil is mostly associated with peltate glandular trichomes (PGTs) found aerially. Currently only one eugenol synthase (EGS), ObEGS1 which belongs to PIP family is identified from sweet basil PGTs. Reports of the presence of eugenol in roots led us to analyse other EGSs in roots. We screened for all the PIP family reductase transcripts from the RNA-Seq data. In vivo functional characterization of all the genes in E. coli showed their ability to produce eugenol and were termed as ObEGS2-8. Among all, ObEGS1 displayed highest expression in PGTs and ObEGS4 in roots. Further, eugenol was produced only in the roots of soil-grown plants, but not in roots of aseptically-grown plants. Interestingly, eugenol production could be induced in roots of aseptically-grown plants under elicitation suggesting that eugenol production might occur as a result of environmental cues in roots. The presence of ObEGS4 transcript and protein in aseptically-grown plants indicated towards post-translational modifications (PTMs) of ObEGS4. Bioinformatics analysis showed possibility of phosphorylation in ObEGS4 which was further confirmed by in vitro experiment. Our study reveals the presence of multiple eugenol synthases in sweet basil and provides new insights into their diversity and tissue specific regulation.


Assuntos
Eugenol/metabolismo , Ocimum basilicum/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Raízes de Plantas/enzimologia , Tricomas/enzimologia , Sequência de Aminoácidos , Eugenol/química , Cromatografia Gasosa-Espectrometria de Massas , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Imuno-Histoquímica , Ocimum basilicum/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Nicotiana/fisiologia
11.
Planta ; 253(1): 10, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389194

RESUMO

MAIN CONCLUSION: The plasma membrane H+-ATPase can be considered as a redox-dependent enzyme, because diamide-mediated inhibition of its hydrolytic and transport activities is accompanied by alkalization of the rhizosphere and retardation of root growth. Plasma membranes were isolated from roots of etiolated pea seedlings treated in the presence of an oxidant-diamide and an inhibitor of redox-sensitive protein phosphatase-phenylarsine oxide. Hydrolytic and proton transport activities of H+-ATPase were determined. The effects of diamide appeared in inhibition of both ATP hydrolysis and the proton transport. However, root treatment with phenylarsine oxide only slightly reduced Vmax, but did not affect ATP-dependent proton transport. The thiol groups of cysteines in the proteins can act as molecular targets for both compounds. However, treatment of isolated membranes with diamide or dithiothreitol did not have any effect on the H+ transport. It can be assumed that water-soluble diamide acts indirectly and its effects are not associated with oxidation of H+-ATPase cysteines. Therefore, plasmalemma was subjected to PEGylation-process where reduced cysteines available for PEG maleimide (5 kDa) were alkylated. Detection of such cysteines was carried out by Western blot analysis with anti-ATPase antibodies. It was found that shifts in the apparent molecular weight were detected only for denaturated proteins. These data suggest that available thiols are not localized on the enzyme surfaces. BN-PAGE analysis showed that the molecular weights of the ATPase complexes are almost identical in all samples. Therefore, oligomerization is probably not the reason for the inhibition of ATPase activity. Roots treated with these inhibitors in vivo exhibited stunted growth; however, a strong alkaline zone around the roots was formed only in the presence of diamide. Involvement of H+-ATPase redox regulation in this process is discussed.


Assuntos
Diamida , Pisum sativum , Raízes de Plantas , ATPases Translocadoras de Prótons , Membrana Celular/enzimologia , Diamida/farmacologia , Pisum sativum/enzimologia , Raízes de Plantas/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia
12.
BMC Plant Biol ; 21(1): 66, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514320

RESUMO

BACKGROUND: Glutamine synthetase (GS) acts as a key enzyme in plant nitrogen (N) metabolism. It is important to understand the regulation of GS expression in plant. Promoters can initiate the transcription of its downstream gene. Eichhornia crassipes is a most prominent aquatic invasive plant, which has negative effects on environment and economic development. It also can be used in the bioremediation of pollutants present in water and the production of feeding and energy fuel. So identification and characterization of GS promoter in E. crassipes can help to elucidate its regulation mechanism of GS expression and further to control its N metabolism. RESULTS: A 1232 bp genomic fragment upstream of EcGS1b sequence from E. crassipes (EcGS1b-P) has been cloned, analyzed and functionally characterized. TSSP-TCM software and PlantCARE analysis showed a TATA-box core element, a CAAT-box, root specific expression element, light regulation elements including chs-CMA1a, Box I, and Sp1 and other cis-acting elements in the sequence. Three 5'-deletion fragments of EcGS1b upstream sequence with 400 bp, 600 bp and 900 bp length and the 1232 bp fragment were used to drive the expression of ß-glucuronidase (GUS) in tobacco. The quantitative test revealed that GUS activity decreased with the decreasing of the promoter length, which indicated that there were no negative regulated elements in the EcGS1-P. The GUS expressions of EcGS1b-P in roots were significantly higher than those in leaves and stems, indicating EcGS1b-P to be a root-preferential promoter. Real-time Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) analysis of EcGS1b gene also showed higher expression in the roots of E.crassipes than in stems and leaves. CONCLUSIONS: EcGS1b-P is a root-preferential promoter sequence. It can specifically drive the transcription of its downstream gene in root. This study will help to elucidate the regulatory mechanisms of EcGS1b tissue-specific expression and further study its other regulatory mechanisms in order to utilize E.crassipes in remediation of eutrophic water and control its overgrowth from the point of nutrient metabolism.


Assuntos
Eichhornia/enzimologia , Eichhornia/genética , Glutamato-Amônia Ligase/genética , Raízes de Plantas/genética , Regiões Promotoras Genéticas , Sequência de Bases , Clonagem Molecular , DNA de Plantas , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Himecromona/análogos & derivados , Himecromona/metabolismo , Raízes de Plantas/enzimologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/genética
13.
Planta ; 253(2): 29, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423117

RESUMO

MAIN CONCLUSION: Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.


Assuntos
Alternaria , Raízes de Plantas , Silício , Sorghum , Alternaria/efeitos dos fármacos , Fenilalanina Amônia-Liase , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/microbiologia , Silício/farmacologia , Sorghum/efeitos dos fármacos , Sorghum/enzimologia , Sorghum/microbiologia
14.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019636

RESUMO

Plant growth is the result of the coordinated photosynthesis-mediated assimilation of oxidized forms of C, N and S. Nitrate is the predominant N source in soils and its reductive assimilation requires the successive activities of soluble cytosolic NADH-nitrate reductases (NR) and plastid stroma ferredoxin-nitrite reductases (NiR) allowing the conversion of nitrate to nitrite and then to ammonium. However, nitrite, instead of being reduced to ammonium in plastids, can be reduced to nitric oxide (NO) in mitochondria, through a process that is relevant under hypoxic conditions, or in the cytoplasm, through a side-reaction catalyzed by NRs. We use a loss-of-function approach, based on CRISPR/Cas9-mediated genetic edition, and gain-of-function, using transgenic overexpressing HA-tagged Arabidopsis NiR1 to characterize the role of this enzyme in controlling plant growth, and to propose that the NO-related post-translational modifications, by S-nitrosylation of key C residues, might inactivate NiR1 under stress conditions. NiR1 seems to be a key target in regulating nitrogen assimilation and NO homeostasis, being relevant to the control of both plant growth and performance under stress conditions. Because most higher plants including crops have a single NiR, the modulation of its function might represent a relevant target for agrobiotechnological purposes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Nitrito Redutases/genética , Nitritos/metabolismo , Folhas de Planta/genética , Processamento de Proteína Pós-Traducional , Compostos de Amônio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Edição de Genes , Mitocôndrias/metabolismo , Modelos Moleculares , Mutação , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Nitrogênio/metabolismo , Compostos Nitrosos/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Conformação Proteica , Spinacia oleracea/enzimologia , Spinacia oleracea/genética
15.
Plant Cell ; 32(12): 3774-3791, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33023954

RESUMO

In legumes, rhizobia attach to root hair tips and secrete nodulation factor to activate rhizobial infection and nodule organogenesis. Endosymbiotic rhizobia enter nodule primordia via a specialized transcellular compartment known as the infection thread (IT). The IT elongates by polar tip growth, following the path of the migrating nucleus along and within the root hair cell. Rho-family ROP GTPases are known to regulate the polarized growth of cells, but their role in regulating polarized IT growth is poorly understood. Here, we show that LjSPK1, a DOCK family guanine nucleotide exchange factor (GEF), interacts with three type I ROP GTPases. Genetic analyses showed that these three ROP GTPases are involved in root hair development, but only LjROP6 is required for IT formation after rhizobia inoculation. Misdirected ITs formed in the root hairs of Ljspk1 and Ljrop6 mutants. We show that LjSPK1 functions as a GEF that activates LjROP6. LjROP6 enhanced the plasma membrane localization LjSPK1 in Nicotiana benthamiana leaf cells and Lotus japonicus root hairs, and LjSPK1 and LjROP6 interact at the plasma membrane. Taken together, these results shed light on how the LjROP6-LjSPK1 module mediates the polarized growth of ITs in L. japonicus.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lotus/genética , Rhizobium/fisiologia , Membrana Celular/metabolismo , GTP Fosfo-Hidrolases/genética , Genes Reporter , Fatores de Troca do Nucleotídeo Guanina/genética , Lotus/enzimologia , Lotus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Simbiose , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
16.
Planta ; 252(1): 9, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32602044

RESUMO

MAIN CONCLUSION: NO was involved in H2-induced adventitious rooting by regulating the protein and gene expressions of PM H+-ATPase and 14-3-3. Simultaneously, the interaction of PM H+-ATPase and 14-3-3 protein was also involved in this process. Hydrogen gas (H2) and nitric oxide (NO) have been shown to be involved in plant growth and development. The results in this study revealed that NO was involved in H2-induced adventitious root formation. Western blot (WB) analysis showed that the protein abundances of plasma membrane H+-ATPase (PM H+-ATPase) and 14-3-3 protein were increased after H2, NO, H2 plus NO treatments, whereas their protein abundances were down regulated when NO scavenger carboxy-2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTI O) was added. Moreover, the mRNA abundances of the HA3 and 14-3-3(7) gene as well as the activities of PM H+-ATPase (EC 3.6.1.35) and H+ pump were in full agreement with the changes of protein abundance. Phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein were detected by co-immunoprecipitation analysis. H2 and NO significantly up regulated the phosphorylation of PM H+-ATPase and the interaction of PM H+-ATPase and 14-3-3 protein. Conversely, the stimulation of PM H+-ATPase phosphorylation and protein interaction were significantly diminished by cPTIO. Protein interaction activator fusicoccin (FC) and inhibitor adenosine monophosphate (AMP) of PM H+-ATPase and 14-3-3 were used in this study, and the results showed that FC significantly increased the abundances of PM H+-ATPase and 14-3-3, while AMP showed opposite trends. We further proved the critical roles of PM H+-ATPase and 14-3-3 protein interaction in NO-H2-induced adventitious root formation. Taken together, our results suggested that NO might be involved in H2-induced adventitious rooting by regulating the expression and the interaction of PM H+-ATPase and 14-3-3 protein.


Assuntos
Cucumis sativus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Óxido Nítrico/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Celular/enzimologia , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Glicosídeos/metabolismo , Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , ATPases Translocadoras de Prótons/genética
17.
Plant Physiol Biochem ; 151: 429-437, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32289636

RESUMO

Potassium (K+) has been reported to alleviate ammonium (NH4+) toxicity in rice through some underlying mechanisms, but it still not clear. In addition, K+ is an important cation for activation of plasma membrane (PM) H+-ATPase activity. Here, we hypothesized that K+ alleviated NH4+ toxicity by mediating PM H+-ATPase function in rice root. In this study, rice plants were cultivated in hydroponic solution with various concentrations of K+ and NH4+. By concurrently supplying K+ with NH4+ or re-supplying K+ after NH4+ toxicity, we found that high K+ concentration reduced the NH4+ uptake rate, enhanced the H+ extrusion rate by the roots, and alleviated rice NH4+ toxicity. The gene expression levels of PM H+-ATPase members (OsA1, 3, 7, 8, and 9) were upregulated by application of increasing concentrations of K+ under NH4+ toxicity. The PM H+-ATPase activity and protein expression in rice roots were also enhanced. Furthermore, the enhancement of PM H+-ATPase activity by a specific stimulator (fusicoccin) rescued rice seedlings from NH4+ toxicity. Taken together, these results indicate that K+ can alleviate NH4+ toxicity, possibly by activating PM H+-ATPase to extrude more H+ and inhibit NH4+ uptake by root. Our results may enhance understanding of the strategy of applying K+ fertilizer to mitigate crop NH4+ toxicity in agriculture.


Assuntos
Compostos de Amônio , Oryza , Potássio , ATPases Translocadoras de Prótons , Compostos de Amônio/metabolismo , Compostos de Amônio/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Ativação Enzimática/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Potássio/farmacologia , ATPases Translocadoras de Prótons/metabolismo
18.
Plant Cell Rep ; 39(1): 63-73, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31535176

RESUMO

KEY MESSAGE: Changes in glucose-6-phosphate dehydrogenase (G6PD) isoforms activities and expression were investigated in soybean roots under drought, suggesting that cytosolic G6PD plays a main role by regulating H2O2 signal and redox homeostasis. G6PD acts a vital role in plant growth, development and stress adaptation. Drought (PEG6000 treatment) could markedly increase the enzymatic activities of cytosolic G6PD (Cyt-G6PD) and compartmented G6PD (mainly plastidic P2-G6PD) in soybean roots. Application of G6PD inhibitor upon drought condition dramatically decreased the intracellular NADPH and reduced glutathione levels in soybean roots. Nitric oxide (NO) and hydrogen peroxide (H2O2) participated in the regulation of Cyt-G6PD and P2-G6PD enzymatic activities under drought stress. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, abolished the drought-induced accumulation of H2O2. The exogenous application of H2O2 and its production inhibitor (DPI) could stimulate and inhibit the NO accumulation, respectively, but not vice versa. qRT-PCR analysis confirmed that NO, as the downstream signal of H2O2, positively regulated the transcription of genes encoding Cyt-G6PD (GPD5, G6PD6, G6PD7) under drought stress in soybean roots. Comparatively, NO and H2O2 signals negatively regulated the gene expression of compartmented G6PD (GPD1, G6PD2, G6PD4), indicating that a post-transcriptional mechanism was involved in compartmented G6PD regulation. Taken together, the high Cyt-G6PD activity is essential for maintaining redox homeostasis upon drought condition in soybean roots, and the H2O2-dependent NO cascade signal is differently involved in Cyt-G6PD and compartmented G6PD regulation.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Glycine max/enzimologia , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/enzimologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Citosol/metabolismo , Secas , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/biossíntese , Glucosefosfato Desidrogenase/genética , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , NADPH Oxidases/metabolismo , Oniocompostos/farmacologia , Oxirredução , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glycine max/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
19.
Plant Cell Rep ; 39(1): 89-100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31583429

RESUMO

KEY MESSAGE: Extracts from hairy root cultures of Cynara cardunculus L. contain proteases and show milk-clotting activity. Cynara cardunculus L. or cardoon is often used as rennet in traditional cheese manufacturing, due to the presence of specific proteases in the flower. However, the flower extracts are variable depending on the provenance and quality of the flowers as well as high genetic variability among cardoon populations, and this affects the quality of the final product. In search for alternative sources of milk-clotting enzymes, hairy root cultures from cardoon were obtained and characterized regarding their protease content and proteolytic activity toward milk proteins. Aspartic, serine and cysteine proteases were identified in hairy roots by mass spectrometry analysis and an azocasein assay combined with specific inhibitors. RT-PCR analysis revealed the expression of cardosin A and D, and immunoblotting analysis suggested the presence of cardosin A or cardosin A-like enzyme in its mature form, supporting this system as an alternative source of cardosins. Hairy root protein extracts showed activity over caseins, supporting its use as milk coagulant, which was further tested by milk-clotting assays. This is also the first report on the establishment of hairy root cultures from cardoon, which paves the way for future work on controlled platforms for production of valuable metabolites which are known to be present in this species.


Assuntos
Cynara/enzimologia , Cynara/microbiologia , Hipocótilo/enzimologia , Raízes de Plantas/enzimologia , Agrobacterium , Animais , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Proteases/metabolismo , Caseínas/metabolismo , Queijo/microbiologia , Cynara/química , Cynara/metabolismo , Cisteína Proteases/metabolismo , Flores/enzimologia , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/microbiologia , Leite , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteólise , Proteoma/metabolismo , Serina Proteases/metabolismo
20.
Environ Pollut ; 256: 113272, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31672353

RESUMO

Cadmium (Cd) pollution in mangrove wetlands has received increasing attention as urbanization expands rapidly. As a dominant mangrove species, Kandelia obovata is highly tolerant to Cd toxicity. Plant hormones and superoxide dismutase (SODs) play critical roles in the response to heavy metal stress in K. obovata roots. Although theirs important influence have been reported, the regulation mechanism between SODs and plant hormones in Cd detoxification by K. obovata roots remains limited. Here, we investigated relationships among SOD, plant hormones, and Cd tolerance in K. obovata roots exposed to Cd. We found that Cd was retained in the epidermis and exodermis of roots, and the epidermis and exodermis had highest hydrogen peroxide (H2O2) content and SOD activity. Similarly, SOD isozymes also exhibited distinct activity in the different parts of root. Overexpressed KoCSD3 and KoFSD2 individually in Nicotiana benthamiana revealed that different SOD members contributed to H2O2 content regulation by promote the activity of downstream antioxidant enzymes under Cd treatment. In addition, assays on the effects of hormones showed that increased endogenous indole-3-acetic acid (IAA) was observed in the cortex and stele, whereas the abscisic acid (ABA) content was enhanced in the epidermis and exodermis in roots during Cd treatment. The results of exogenous hormones treatment indicated that KoFSD2 upregulated under ABA and IAA treatment, but KoCSD3 only induced by ABA stimulation. Taken together, our results reveal the relationship between SODs and plant hormones, which expands the knowledge base regarding KoSODs response to plant hormones and mediating H2O2 concentration under Cd stress.


Assuntos
Cádmio/toxicidade , Peróxido de Hidrogênio/análise , Reguladores de Crescimento de Plantas/metabolismo , Rhizophoraceae/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade , Adaptação Fisiológica/efeitos dos fármacos , Cádmio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Rhizophoraceae/enzimologia , Superóxido Dismutase/genética , Poluentes Químicos da Água/metabolismo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA